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Spatial optical solitons in nonlinear photonic crystals
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We study spatial optical solitons in a one-dimensionahlinear photonic crystatreated by an array of
thin-film nonlinear waveguides, the so-called Dirac-comb nonlinear lattice. We analyze modulational instabil-
ity of the extended Bloch-wave modes and also investigate the existence and stability of bright, dark, and
“twisted” spatially localized modes in such periodic structures. Additionally, we discuss both similarities and
differences of our general results with the simplified models of nonlinear periodic media described by the
discrete nonlinear Schdinger equation, derived in the tight-binding approximation, and the coupled-mode
theory, valid for shallow periodic modulations of the optical refractive index.
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[. INTRODUCTION One of the main features of wave propagation in periodic
structuregwhich follows from the Floquet-Bloch theorys

Discrete spatial optical solitonsave been introduced and the existence of a set of forbidden band gaps in the transmis-
studied theoretically as spatially localized modes of periodicion spectrum. Therefore, the nonlinearly induced wave lo-
optical structuregsee, e.g., Refd1-4] and also a review calization can become possible in each of these gaps. How-

paper[5]), and they have recently been observed experimereVer, the effective DNLS equation derived in the tight-
tally in arrays of nonlinear single-mode optical waveguidesPinding approximation describes only one transmission band
[6]. A standard theoretical approach in the study of the disSurrounded by two semi-infinite band gaps and, therefore, a
crete spatial optical solitons is based on the derivation of afin€ structure of the band-gap spectrum associated with the
effective discrete nonlinear Schioger (DNLS) equation wave transmission in a periodic medium |s_lost. On the other

[1], and the analysis of its stationary localized solutions—hand’ the coupled-que theory 9f gap solitpgkdescribes .
discrete localized modd$]. In the solid-state physics, the only the modes Iocall_zed n an isolated narrow gap, and it
similar approach is known ahe tight-binding approximas does not allow to consider smultaneously the gap mo_des and
tion that, in application to optical waveguide arrays, Corre_conventlonal guided waves localized due to the total internal

q h afeakl lecfund | q reflection. The complete band-gap structure of the transmis-
sponds to the case ateakly coupledundamental modes o, nectrum and simultaneous existence of localized modes

excited in each waveguide of the array. The analogous cons yifterent types are very important issues in the analysis of
cepts appear in gtherﬁelds such.as thg nonlinear dynamics gfq stability’ of nonlinear localized modd40]. Such an
the Bose-Einstein condensates in optical latticgs analysis is especially important for the theory of nonlinear
On the other hand, weak nonlinear effects in optical fibergocalized modes and nonlinear waveguides in realistic mod-
with a periodic modulation of the refractive inde®ften  els of nonlinear photonic crystaisee, e.g., the recent paper
calledoptical grating are well studied in the framework of [11] and references thergin
another approachthe coupled-mode thearyrhe coupled- In this paper, we consider a simple model of nonlinear
mode theory is based on a decomposition of the electric fielgeriodic layered media where a periodic optical structure is
into the forward and backward propagating components, urformed by an array of thin-film nonlinear waveguides em-
der the condition of the Bragg resonance. Such an approadiedded into an otherwise linear dielectric medi(sae also
is usually applied to analyze nonlinear localized waves in theRef. [12]). Such a structure can be regarded as a nonlinear
systems with a weakly modulated optical refractive indexanalog of the so-called Dirac-comb lattiEg3], where the
known asgap (or Bragg) soliton$8], and such gap solitons effects of the linear periodicity and band-gap spectrum are
are known to appear in other fiel@3]. taken into account explicitly, whereas nonlinear effects enter
Thus, the theory of spatial and temporal optical solitons inthe corresponding matching conditions allowing a direct ana-
periodic structures developed so far is based on one of thigtical study.
two approaches, the DNLS equation or the coupled-mode We analyze nonlinear localized modes in an infinite struc-
theory. However, real experiments in the nonlinear guidedture consisting of a periodic array of nonlinear waveguides,
wave optics are conducted in the periodic structures of morsimilar to the geometry of the experiments with discrete op-
complicated geometries and under the conditions when nonécal solitons[6]. First, we study modulational instability of
of those approximations are valid. In such a case the appliextended modes in both self-focusing and self-defocusing
cability of the tight-binding approach and the correspondingregimes. Then, we discuss different types of nonlinear local-
discrete equations, from one hand, and the coupled-modeed modegsuch as bright, dark, and “twisted” spatial soli-
theory, from the other hand, become questionable, especialtpng and also analyze numerically their linear stability. We
for the analysis of the linear stability of nonlinear localized emphasize both similarities and differences between our re-
modes. Therefore, a consistent theory of nonlinear effectsults and the results obtained in the framework of the DNLS
and localized modes in periodic media is still missing. equation and the continuous coupled-mode theory.
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P= J+x|l//(X,Z)|2dX.

—

At this point, it is important to mention that E¢R) de-
scribes the beam evolution in the framework of the so-called
parabolic approximation valid for the waves propagating

- mainly along thez direction (see also Refl17] and discus-
’ y sions therein In other words, the characteristic length of the
, A 7 beam distortion due to both diffraction and refraction along

the z axis should be much larger than the beam width in the
X transverse directior. This leads to the condition @f weakly
modulated periodicity|e (X) — €] <[e].

FIG. 1. Array of thin-film nonlinear waveguides embedded into We look for Stationary localized solutions of the normal-
a linear slab waveguide. Gray shading shows a profile of a nonlinj;aq Eq.(2) in the standard form

ear localized mode.

P(x,2)=u(x; B)e'P?, 3

whereg is the propagation constant, and the amplitude func-

tion u(x;B) satisfies the stationary nonlinear equation
We consider the electromagnetic waves propagating along

the Z direction of a slab-waveguide structure created by a d?u

periodic array of thin-film nonlinear waveguidésee Fig. 1 —But gz + A u=0. 4
Assuming that the field structure in tivedirection is defined

by the linear guided mode of the slab wavegui¥), we  |f there is no energy flow along the transverse direction
separate the dimensions presenting the electric field apen the functionu(x) is real, up to a constant phase that can
E(X,2)&(Y). Then, the evolution of the complex field enve- pe removed by a coordinate shift>z—z,. This is always
lope E(X,Z) is governed by the nonlinear Sclioger the case for spatially localized solutions with vanishing as-

Il. GENERAL APPROACH
A. Model

(NLS) equation, ymptotics,u(x— *+)=0.
2 To simplify our analysis further, we assume that the linear
JE J°E N . .
i— +D -5 +e(X)E+g(X)|E[?)E=0 (1)  periodicity is associated only with the presence of an array of
d J '

the thin-film waveguides, and define the response function in
the model Eq(2) as follows:

where D is the diffraction coefficient D>0). The weak
modulation of linear refractive index in the transverse direc-
tion is defined by the functioe(X), whereasy(X) charac- F(x)= _2 (a+yl)o(x—hn), 6)
terizes the Kerr-type nonlinear response of the layers. We A

assume that either the functiar(X) or g(X) (or both of

+ oo

. S A ) - where h is the spacing between the neighboring thin-film
them is periodic inX, i.e., it describes the periodic layered \ 5,04y idegthe lattice periogl andn is the integer. The total

structure similar to the so-cglled transverse Braggresponse of the thin-film layers is approximated by the
waveguides created by the nonlinear thin-film muIt|Iayerfunctions and the real parametessand y describe both

Etrugtures[llgl,lfﬂ or the impurity band in a deep photonic |inear and nonlinear properties of the layer, respectively.
and gar 16]. . Without loss of generality, the nonlinear coefficientan be

In order to reduce the number of physical paﬁrzameters, Weormalized to unity, so thaty=+1 corresponds tcself-

H . — ie !

normalize Eq(1) as follows:E(X,Z) = i(x,2) E¢e'*", where  ¢q;singand y= — 1 to self-defocusingionlinearity. The lin-
&S the2 mean value of the function(X), x=X/d andz  g5¢ coefficient ¢>0) defines the low-intensity response,
=ZD/d* are the dimensionless coordinatdsndE, are the 5 it characterizes the corresponding coupling strength be-
characteristic transverse scale and field amplitude, respegzeen the waveguides. Modé®) and(5) can be regarded as
tively. Then, the normalized nonlinear equation has the form, nonjinear analog of the Dirac-comb lattice, earlier studied

in application to the photonic crystals in the linear regime

& ly [13].
i(?—lzﬂ+a—):2—p+}"(l;x)¢=0, 2 °nvisl

B. Dispersion properties and discrete equations

where  the = real function F(I;x)=d*D Te(X)—& Following the path outlined in Ref17], we present the
*+9(X)1|Eqo|*] describes botimonlinear and periodic prop- - stationary modes defined by Eqé) and(5) as a sum of the
erties of the layered medium, amek|y|* is the normalized  counterpropagating waves in each of the linear slab

local wave intensity. We note that the systé# is Hamil-  \aveguides,
tonian, and for spatially localized solutions it conserves the
total power, u(x)=a,e” “x-nh 4 p etwux-nh (6)
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BR IR C. Linear stability analysis

To studylinear stability of localized modes, we should
consider the evolution of small-amplitude perturbations of
the localized state presenting the solution in the form

= - P(x,2)={u(x) +v(x)eZ+w* (x)e " 2e'hz (10

o & A LD O N B~

; | ; | | ; From Egs.(2) and(5), we obtain the linear eigenvalue prob-
-50 -25 0 25 50 lem for smallv(x) andw(x),

2 T T T T T I + oo

d%v
sk // ) —(B+F)”+d?+n=2—w [(a+29|us/2)v+ yuiw]
L |

05 N X &(x—hn)=0,
A (11)
0 w 2 *\2
s \ | . ! ! : —(B-Dwt gz + > [(a+2y|ugHw+y(uf) ]
50 28 0 B 25 50 n=-e
X 8(x—hn)=0.

FIG. 2. Characteristic dependencies of the paramejeand ¢
on the propagation consta@t Gray shading marks the transmission After representing the fields as sums of the counterpropagat-
bands. The lattice parameters #&re 0.5 anda=10. ing waves(see Sec. I B we reduce Eq91l) to a set of the
discrete equations for the amplitudes at the layers,
wherenh=x=<(n+1)h. Then, we express the coefficients

a, andb,, in terms of the wave amplitudes at the nonlinear n(B+T)vnt(vn-1tvn+1)
layers,Up=u(hn), + YE(B+T)[2]uy 20+ UdW,] =0,
unth_un-*-l (12)
— -w,+(w,_{+u
a, 2 sinf(uh) (B JWi+(Wp-1+Upiq)
(7) +yE(B—T)[2|uy| Wy + (uf)?v,]=0.
b,=u,—a,,

In general, the solutions of this eigenvalue problem fall into
where u(B)=B. Finally, we substitute Eq6) and (7) one of the following categoriesi) internal modeswith real
into Egs.(4) and(5), and find that the normalized amplitudes €igenvalues that describe periodic oscillati¢ttweathing”)
U,=[&y]u, satisfy a stationary form of the DNLS equa- Of the localized statdiji) instability modeshat correspond to
tion, purely imaginary eigenvalues with I<0, and(iii) oscilla-

tory unstable modethat appear when the eigenvalues are

PUn+ U1+ Ups 1)+ x|]Un2U,=0, (8) complex(and ImI'<0). Additionally, there can exist decay-
ing modes when Inh>0. However, from the structure of
where y=sgn¢y), and Egs.(12) it follows that the eigenvalue spectrum is invariant
with respect to the transformatidin— +I"*, if all the am-
n(B)=—2 cosliuh)+ a&(B), plitudes u,e'® are real, whereg is an arbitrary constant
9) phase. In such a case exponentially growing and decaying
E(B)=sinh(uh)/ . modes always coexist, and the latter do not significantly af-
fect the wave dynamics.

Linear solutions of Eq.8) (when the term~ y|U,|? It is important to note that the grating properties are ex-
vanishes have the form U,=U,eX", where K pressed through the functiongg) and &) [see Eq(9)] in
=+cos Y(—7/2) is the wave number. Therefore, extendedboth the stationanfEq. (8)] and perturbationEq. (12)]
linear solutions with reaK can exist fol | <2. On the other  equations. Therefore, the function§s) and &(g) fully char-
hand, nonlinear localized modes with exponentially decayingacterize the existence and linear stability properties of local-
asymptotics can appear only fop|>2 (whenK is imagi- ized and extended solutions of the original mod&p and
nary), this condition defines theand-gap structure of the (5) with stationary intensity profiles.
spectrum Characteristic dependencies gf and & vs the
propagation constan8 are presented in Fig. 2, where the Ill. APPROXIMATE MODELS
bands are shown by a gray shading. The fissmi-infinite

band gap corresponds to the tdtaternal reflection(IR). On A. Tight-binding approximation

the other hand, at smallgg the spectrum band gapappear When each of the thin-film waveguides of the periodic
due to the resonant Bragg-type reflecti®@R) from the pe-  structure supports a fundamental mode that weakly overlaps
riodic structure. with the similar mode of the neighboring waveguide, the
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modes become weakly coupled via a small change of th@,=—(7/h)? and 8,;=8,+2al/h+0(«*?. To find solu-
refractive index in the waveguides. Then, the mode propertions close to the BR gap, we present the total field in the
ties can be analyzed in the framework of the so-cdlight-  form

binding approximationwell developed for the problems of

solid-state physicg18]. P(X,2)=a1(X,2)up(X; B1) +@x(X, Z)Up(X; B2),  (16)

In order to employ this approximation in our case, first we h K i litud )
analyze the properties of a single thin-film waveguide in the//€r€a; are unknown noniineéar amplitudes, ang(x; B1.)

linear regime and solve E¢4) with F(1;x) = ad(x) to find :[e tEe linear Bloch functl_ons which satisfy E(.qg) and(5)_ .
; : : . v=0. The Bloch functions can be found in an explicit
the spatial profile of a linear guided mode form: Up(X: B,) = sin(xar/h). and  up(x+nh;By) =
ug(x) = exp — a|x|/2) (—1)"sin(h2—x) | B1]] for 0=<x=<h. Note that the field
amplitudes at the layers are,~(—1)"a;(nh), since
and the corresponding value of its propagation consigqt, u,(nh;8,)=0.
=a?/4. Second, we consider the interaction between the In order to find the equations for the amplitudg$x,z),
waveguides in the array assuming that the total field can bae substitute Eq(16) into the original model Eqs2) and
presented as a superposition of slightly perturbed waves la5). Next, we use the fact that the gap is narrow, and close to
calized at the isolated waveguides. Specifically, we assumigs edges the Bloch functions are weakly modulated, i.e.,
that the propagation constant remains close to its unpefva, ,/9x|<|a; »/h|. This assumption allows us to keep only
turbed valueps (i.e., [idy/dt+ Bsy|<|Bsi]), and neglect the lowest-order terms. Then, we multiply the resulting equa-
small variations in the spatial profiles of the localized modestion by uy(x; ;) and integrate it over one grating period.
Then, we seek a general solution of E(®. and (5) in the  Finally, the coupled equations for the modulation amplitudes

form are
= ) &al 2 (9a2 2 2
W(x2)= 2 Pn(2)us(x=nh). (13 | =t Bt — =+ ypagl*a, =0,
In such an approximation, the wave evolution is character- _day n 27 day -0 1
ized by the amplitude functions,(z) only. In order to find | =7 TB2a2= 1~ —5-=0. (17)
the corresponding evolutionary equations, we substitute Eq.
(13) into Egs.(2) and(5) and, multiplying the resulting equa- Equations(17) derived above allow a direct comparison

tion by ug(x—mbh), integrate it over the transverse profile. between the coupled-mode theory and the general results for
According to the original assumption of weakly interactingthe stationary localized solutions for whicl; 4(x,z)
waveguides(valid for eh>1 and|y||4.(2)|?<a), in the — =a;(x)e'”* Additionally, since the functiona; are weakly
lowest-order approximation we puts(nh,z)|?=|y4,(z)|?>  modulated, the spatial derivatives can be approximated by
and neglect the overlap integralsf Zuy(x—nh)uy(x finite differences between the amplitudes at the layecse
—mh)dx, with |[n—m|>1, which produce the terms of that such an approximation is only valid fBr= 3, ,). After
higher orders. Finally, we derive a system of coupled discretéimple algebra we obtain a discrete equation for the field
equations for the field amplitudes at the nonlinear lajeps ~a@mplitudes at the layers, which has the form of the DNLS
to small perturbations, sincg(nh,z) = ,(z) + O(e~*"?)],  EQq.(8) with

dy, 2 h*
[ d—lpz+ﬁsz,/;n+ %e’“h’z(zpn,ﬁ Y1)+ %|¢n|2¢n=0. 7(B)=2= 72 (B=B1)(B~B2),
(19 he
Stationary solutions of E¢14) have the formy,=u,e'??, §B)=52(B=B2)- (18)

where the amplitudes, are given by Eq(8) with

Similar to the case of the tight-binding approximation, the
dispersion relation&l8) can be found from the general result
(9) by performing a series expansion near the band edge

value 83, .
Relations(15) can be found as a series expansion of the

original dispersion relationg9) near the edges of the first C. Two-component discrete model
transmission band, in the limith>1.

2 a? 1
n=— ? ( B_ T) eafh/Z, §: EeahIZ. (15)

The principal limitations of both the tight-binding ap-
proximation and the coupled-mode theory is explained by
the fact that they are both valid in local narrow regions of the

Now we consider the opposite limith<<1, when the first general band-gap structure and under special assumptions.
Bragg-reflection gap is narrow, i.e3{— B,)<|B1.4, where Indeed, these two approaches are applicable when the dimen-
B1, are the propagation constants at the gap edges, definstbnless parameteth is either small or large, and none of
by the conditiony(B;)=2. From Eq.(9) it follows that those approaches covers the intermediate cases. While a gen-

B. Coupled-mode theory
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eral study should rely on the numerical solutions with the The three different approximate models discussed above
exact dispersion relation®), it is useful to consider a sim- allow a simple analysis of the limiting cases, and they will be
plified model that canat least, qualitatively describe the used below in calculating different properties of the extended
wave properties close to the BR gaf=£3,) in the transi- and localized modes.
tional region, being valid foeh=1 as well. To achieve this
goal,we extend the tight-binding approximation and the cor-
respondingDNLS equation introduced above in Sec. Il A. V. MODULATIONAL INSTABILITY
We note that Eq(14) can be considered as a rough dis-
cretization of the original mod€R), with only one node per
grating period located at=nh. Then, the natural generali- First, we analyze the properties of the simplest extended
zation is to include additional nodes located between théplane-wave solutions of the mode{2) and (5) that have
nonlinear layers at the positions=(n+%)h. Since the re- equal intensities at the nonlinear layetg=|u,|=const,
fractive indices at the node position are now different, weand correspond te¢he first transmission bandrhese solu-
obtaina new system of coupled discrete equatithet cor-  tions have the form of the so-called Bloch wav@s) u,
respond to a two-component superlattice, =uee'k", where the wave numbe is selected in the first
Brillouin zone,|K|=< . Using Eq.(8), we find the dispersion
relation ask = + cos Y[ 7(;@)], where@= (a+ y13) defines
the layers response modified by nonlinearity. Since the trans-
(19  mission bands are defined by the conditje<2 (see Sec.
I1B), the band structure shifts as intensity increases. Indeed,

A. General analysis

. d‘ﬂn ~ 2 _
| E"’Bl‘ﬂn"'ﬁ’l( Un-12t Ynr1) + ')’| ¢n| =0,

A1 by resolving the dispersion relation we determine a relation
' 4z + Bothnt 12t P2t ny1) =0. between the propagation constant and the wave intensity
[2 cosK+ 7n(B)]
We find that, similar to the general case, the stationary mode lo(B)=~— TER) (22)

profiles can be expressed in terms of the amplitudgs
which satisfy the normalized DNLS E) with the follow-

ing parameters: Since in the first transmission bargt> — (7/h)?, we have
&(B)>0 (see also Fig. g and it follows from Eq.(9) that
n(B)=2—(p1p2) N B—B(B—B>), the propagation constagtincreases at higher intensities in a
(20) self-focusing medium ¥>0), and decreases in a self-
EB) =7y L pipa) B~ PBs). defocusing mediumy<0).

One of the main problems associated with the nonlinear
BW modes is theiiinstability to periodic modulationsf a

One can immediately see that our new mo¢kd) de- . ; ; o
: ; . S certain wavelength, known asodulational instability(see
scribes an effective system with a semi-infinite IR gap and a

BR gap of a finite width. We note that, although dispersionalsc.)[lg])' In order.to describe the stability propgrties of the
relations in Eqs(20) and(18) look similar, the latter relation periodic BW soluthns, we gnalyze th? evolution of weak
is only valid for 8~ 8, ,, so that the coupled-mode theory perturbations described by the eigenvalue probl&gn. Due

q ’ . ! , to periodicity of the background solutiom(x), it follows
escribes only a single isolated Bragg-reflection gap. Theref'rom the Bloch theorem that the eigenmodes of ELD)
fore, the model19) provides an important generalization of

iodic. i = i(a+K)
the DNLS theory, which also has a wider applicability thanShOUId also bei(qp_elgodlc, |.eu(x+h)_ v(x)e . and
the coupled-mode theory. w(x+h)=w(x)e . Then, we obtain the following solv-

Because the moddl19) describes an extra gap in the ability condition:
transmission spectrum, a comparison with the original model

becomes more complicated. We choose the model param- AT+ n n n
etersp; and’y in order to match the dispersion relations in [n(B+T)+2yE(B+T)lo+2 cosq+K)]
the vicinity of 8,, and satisfy a relation betwean, and X[p(B—T)+2y&(B—T)ly+2cogq—K)]

Un+ 172 following from Eqgs.(6) and (7):

= Y2E(B+T)EB-T)I3. (23

p1=—2 costi\/B;h/2)/(dn/dB) s,
Possible eigenvalueE are determined from the condition
po=(B1— B2)/[2 coshi\/B.h/2)], (21)  that the spatial modulation frequencigswhich are found
from Eq. (23), are all real. Therefore, the eigenvalue spec-
- trum consists of bands, and the instability growth rate can
7:_75('81)/“77“3),81' only change continuously from zero to some maximum
value. We also note that the spectrum possesses a symmetry
where the functionsy(8) and &8) should be calculated ac- I'— =I"*, and it is sufficient to study only the solutions with
cording to Eq.(9). Rel'=0.
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FIG. 3. Modulation frequency vs real (left) and imaginary
(right) parts of the perturbation eigenvalliefor the staggered BW
modes in a self-focusing mediunK& 7, =7, =3, h=0.5, y
=+1). Solid lines, stable (IMf=0) and dashed, unstable (Im FIG. 4. Development of modulational instability in a self-
#0). focusing medium for a perturbed unstaggered nonlinear BW mode

with 1y=0.44(a=3, h=0.5, andy=+1).

B. Stability of staggered and unstaggered modes
@restable in a self-defocusing mediupp=—1). It can be
shown that the similar results are also valid for our model.

staggered K=0) or (ii) staggered K=). To describe a Indeed, since the unstaggered waves are the fundamental

transition from purely real to complex linear eigenvalues, Wemod_e_s_ of the self-induced periodic potential, oscillatory in-
stabilities cannot occur, and Ml can only correspond to

consider the function ) X - . -
purely imaginary eigenvaluek. Such an instability should

Q(I')=cogq(IN], appear at the critical points defined by H@4) at I'=0,
which are found a€)=1,7+ 3. Therefore, the range of the
defined from Eq(23), and extend the solution from the real unstable modulation frequencies is
axis to the complex plane by writing a series expansion:

In what follows, we consider two characteristic cases o
the stationary nonlinear BW modes, when they @jeun-

0<qg<cos Y 5+3), —4=y<-2,
Q(Rel'+iImI')=Q(Rel')+Q’'(Rel")(i ImI")
o<gsw, —n<-—-4.
+(3)Q"(Rel')(i ImI')2+0O(ImT)3),

According to Eq.(22), for unstaggered modes we hayey
where the prime denotes differentiation with respect to the< — 2y, and the(in)stability results follow immediately. We
argument. Since the modulation frequency should remaimote that at small intensitiésshen = — 2) the modulational
real, the second term in the series expansion should vaniskhstability in a self-focusing medium corresponds to long-
Then, we conclude that complex eigenvalues only appear atave modulations, as illustrated in Fig. 4.

the critical points, where The staggered BW modes in a self-defocusing medium
, (x=—1) are also modulationally unstablgl9]. This hap-
Q'(I')=0. (24 pens because the staggered waves experience effectively

Therefore, (in)stability can be predicted by studying the f.‘ofma' diffraction [20]. Such waves exist fop>2 and, .
. : similar to the case of unstaggered waves in a self-focusing
function Q(I") on the real axis only, and then extending the ; : ; .
medium, we identify the range of unstable frequencies cor-

solution to the complex plane at the critical poiriisthey ! . ; ;
are presentdetermined by Eq(24). The real modulation responding to the purely imaginary eigenvalues [Re),

frequencies are found ag=cos ¥(Q) in the interval —1 0<qg<cos X(3—7), 2<n=4,
<Q=<1, therefore, modulational instabilittMl) only ap-
pears at the critical points where’@l’)=0 or q=0,7, see o<q=sm, 7n>4.

an example in Fig. 3.
Some particular cases of the modulational instability of Finally, we analyze stability oftaggered BW modes in a

the nonlinear Bloch waves in a periodic medium have beeself-focusing mediurfy= +1). Since such modes exist for
earlier studied for the Bose-Einstein condensates in opticay<2, the domain £ Q(I')<3— » at Rel'=0 does not cor-
lattices[19] in the mean-field approximation based on therespond to physically possible modulation frequencies. How-
Gross-Pitaevskii equation, which is mathematically equiva-ever, the oscillatory instabilitie§.e., those with compleX)

lent to Eq.(2) with F(I;x)=v(x)+ yl. It was demonstrated can appear due to resonances between the modes that belong
that theunstaggered modes are always modulationally un-o different bands. Such instabilities appear in a certain re-
stable in a self-focusing mediufly=sgny=+1), and they gion of the wave intensities in the case of shallow modula-
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FIG. 5. Modulationally unstable staggered BW modgsay FIG. 6. Region of modulational instabilifgray shadingfor the

shading in a self-focusing medium, shown as the intensjfys the ~ model (19); notations are the same as in Fig. 5. The result is only
parametera (at h=0.5, y=+1). Dashed lines are the analytical qualitatively similar to Fig. 5, since the two-component discrete
approximationg25) and(26) for the low- and high-intensity insta- model(19) is asymptotically correct for small intensities only.

bility thresholds, respectively.

(B=B2)°
tions, below a certain threshold valgehen ah<3.57--), 3(B—B2)— m—(ﬁl—ﬂz)>0,
as shown in Fig. 5. We find the following asymptotic expres-
sion for the low-intensity instability threshold, where the coefficientp, , are defined in Eq(21). The cor-
responding instability region in the parameter space intensity
YV~ o+ 22h a7+ O(a?), (25) Vs lattice depth(e) can be calculated using Eq&2) and

(20), and the result is presented in Fig. 6. Since the simpli-
fied model is(asymptotically correct only for small intensi-
ties (i.e., whenB=g,), there is no quantitative agreement
between Figs. 5 and 6. However, the modd)) does predict
a=4y1{" exp( — yI{"*h/4). (26)  the key pattern of oscillatory Mii) instability appears only
for a finite range of intensities when the grating defthis

These analytical estimates are shown with the dashed lines Relow a critical value, andi) M is completely suppressed
Fig. 5. for large «. Thus, unlike the DNLS equation, the two-

It is interesting to compare our results with those obtainecomponent discrete modgl9) predicts qualitatively all ma-
in the framework of the continuous coupled-mode theonyor features of Ml in a periodic medium.
(see Sec. Il B, valid for the case of a narrow band gée., We find that in a self-focusing medium the staggered
for small @ and smalll5). Although the nonlinear coupling Wwaves K=m) are always stable with respect to low-
coefficients in Eq(17) are different compared to a coupled- frequency modulations, see Fig. 7. However, at larger inten-
mode model for shallow grating&1], the key stability result ~ Sities unstable frequencies appear close to the middle and the
remains the same, and the oscillatory instability appeargdge of the Brillouin zone, and they are shifted towards the
above a certain critical intensity proportional to the band-gapedge,q=m, having there the largest instability growth rate.
width. In our case, the band-gap width is/h+O(a®?), The corresponding modulational instability manifests itself
and we observe a good agreement with the results of théwrough the development of the period-doubling modula-
coupled-mode theory. However, the coupled-mode modelions, as shown in Fig. 8.
(17) cannot predict the stability region at high intensities,
since in this region the approximation is no longer valid. V. BRIGHT SPATIAL SOLITONS

In the limit of large @, the BW dynamics can be studied
with the help of the tight-binding approximatioisee Sec.
[l1A). Then, the effective discrete NLS equati@¥) pre- Stationary localized modes in the form of discrete bright
dicts the stability of the staggered modes in a self-focusingolitons can exist with the propagation constant inside the
medium[22]. Numerical and analytical results confirm that band gaps, whem»|>2. Additionally, such solutions can
our solutions are indeed stable in the corresponding paranexist only if the nonlinearity and dispersion sign are differ-
eter region. ent, i.e., whenpy<—2. It follows from Eq.(9), that 83>

The two-component discrete model introduced in Sec—(w/h)? and >0 in the IR gap and the first BR gapee
[Il C predicts the existence of oscillatory instabilities of the also Fig. 2, so that the type of the nonlinear response is
BW waves forg satisfying the inequality fixed by the medium characteristics, singe sgn(y). There-

while the upper boundary is given by the relation

A. Odd and even localized modes
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T — — T T T which means that the solutions become “staggered’yat

/ >2. Due to this symmetry, it is sufficient to find localized
/ solutions of Eq.(8) for »<—2 and y=+1. The known
. approximate solutions give accurate results only in the case
/ of highly localized modes|¢|>2) (see[5,24], and refer-
ences therejnand in the continuous limit| 7| =2) (see, e.g.,
// [3]). In order to describe the mode profile for arbitrary values
_— of 7, we introduce anew approach based on the physical
— properties of localized solution$Ve recall that the nonlinear
localized modes are similar to the impurity states, which ex-
plains the presence of a sharp central p@akwo peaksin
the mode profiles at large. On the other hand, we have
found that the tails of a localized mode are always quite
0 5 10 15 20 5 30 smooth, both in the continuous limit and highly discrete case.
. Based on these facts, we construct the approximate solutions
Intensity by matching the mode tails with the central impurity nile
First, we have to find an approximation for the mode tails.
Since the tail is smooth, its profile can be well approximated
by the continuous equations. The simplest yet effective ap-
'broach is to choose the model coefficients to match the dis-
crete solutions at the beginning of the tail, which we define
as thezero concavity pointand in thelinear limit corre-

] ) ) ) ] . sponding to the far-field asymptotics. Then, after simple cal-
fore, self-focusing nonlinearity can support bright solitons iNculations, we obtain aapproximate continuous equation for
the IR region (where <—2), i.e., in the conventional he mode tails

waveguiding regimeln the case of the self-defocusing re-

Modulation Frequency q
S
|

FIG. 7. Unstable modulation frequenci@gay shadingvs in-
tensity |y, for the staggered BW modes €3, h=0.5, y=+1).
The solid line shows the parameters of the linear eigenmode wit
the largest instability growth ratg.e., maxim T7).

sponse, bright solitons can exist in the first BR gap, owing to N d2U

the fact that the sign of the effective diffraction is inverted —AU+ P ae u®=0, (28)
(#>2). In the latter case, the mode localization occurs in

the so-callecantiwaveguiding regime wherex=—(7+2)>0, andp=cosh }(1+\/2). The solu-

Let us now consider the properties of two basic types otion of Eq. (28) with the vanishing far-field asymptotics has
the localized modesodd centered at a nonlinear thin-film the form

waveguide, andeven centered between the neighboring
waveguides, so that|, = x°U _|,-s, wheres=0,1, respec- U(n;ng) = 2\ seckp(n+ny)), (29)
tively. For discrete lattices, such solutions have already been
studied in the literaturésee, e.g., Ref23]), and it has been Where the free parameteg defines the shift. Note that in the
found that the mode profile is “unstaggere@e., U,>0) if  limit \—0 we havep— X, and the results of the conven-
n<—2. On the other hand, E@8) possesses a symmetry tional continuous approximatidri] are recovered.
Second, we have to construct the full approximate solu-

Up—=(=D)"W,, 7—-n x——x, (27)  tion as a combination of two tails. Such a state is supported
by the central node in odd moded(), and by two nodes in
the case of even topologyJ(_;=xUg). Since the profiles
are symmetric, we have to calculate the field structure only
for n=0, and the discrete tail profiles forx=1 can be ap-
proximated as

Up=U(n;ny), (30

where the functiotd (n;ng) is given by Eq.(29). In order to
determine the unknown parameters, the peak amplitligle
and shiftng, we should solve the original discrete E§) at
the soliton peakrf=0) and at the neighboring site€ 1),
—(2—s+N\)Ug+(2-s)U;+U3=0,

NG~

—(2+N)U;+Ug+U,+U3=0, (31)

FIG. 8. Development of the instability-induced period-doubling Where we took into account the symmetry properties of odd
modulations. Initial profile corresponds to a slightly perturbed stagand even modes. We find that for all>0 there exists a

gered mode with ,=29.87. Parameters are the same as in Fig. 7.solution that belongs to a smooth branch, starting wigh
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FIG. 11. Top: power vs propagation constant in the self-
defocusing ¢=—1) regime. Dotted, oscillatory unstable modes;
other notations are the same as in Fig. 10.

FIG. 9. Dependence dB) the shift parameteng and (b) peak
normalized amplitudéJ, in Egs.(30) and(31) on the parametex
for odd and even bright localized modes. Dashed linefjnnu-
merically calculated values.

rameter range, including the extreme cases of the continuous

=92 in the continuous limitat \—0), see Fig. @a). We  (A—0) and anticontinuous\(— + =) limits.

compare the analytical approximation with the exact numeri- Our linear stability analysis reveals that even modes are
cal solution of the original modeB) for the peak amplitude @lways unstablevith respect to a translational shift along the
Ug, and find that an error does not exceed 1.5% for odd and @S- On the other hand, odd modes are always stable in the
0.8% for even modes. As a matter of fact, the corresponding€!f-focusing regimesee Fig. 10, top but can exhibibscil-
curves are indistinguishable in Fig(t9. The actual mode 1atory instabilities in the self-defocusing case when the
profiles are also adequately represented, see examples RRWer exceeds a certain critical val(eee Fig. 11, top At
Figs. 1Ga) and 1Gb) and 11a) and 11b). Therefore, the this point, an eigenmode of the linearized problem resonates
suggested analytical procedure allows us to obtain extreme?(]"[h the band-gap edge, the valug Rel’) moves inside

accurate approximate analytical solutions in the whole pafhe band, and nonzero imaginary part of the eigenvalue ap-
pears, as illustrated by an example in Fig. 12. Such an insta-

bility scenario is similar to one earlier identified for gap soli-

‘ tons [25], and also for the modes localized at a single

- 7 . nonlinear layer in a linear periodic structUrE0]. The latter

a example demonstrates a deep similarity between the periodic

& systems with localized and distributed nonlinearities.

| b i Development of both types of instability is demonstrated

in Figs. 13a) and 13b). Transformation of an even mode

B— 1'0 ! 2'0 ! 3'0 ' 4'0 L into an odd counterpart due to a symmetry-breaking instabil-

B ity is shown in Fig. 18a). The effect of oscillatory instability

on an odd mode is quite different: strong radiation is emitted

(b) due to a resonant coupling with linear waves outside the

band gap, see Fig. 113.

1 T T T T T T T T P

Power
o
W
I

B. Soliton bound states—*“twisted” modes

0 i 0 . I - Due to a periodic modulation of the medium refractive
2 v 2 2 : 2 index, solitons can form bound stafeX6]. In particular, the
x+h/2 X so-called“twisted” localized mod€e[27] is a combination of
FIG. 10. Top: power vs propagation constant for dddck and WO out-o_f—phasg bright solitor{26]. Such solutions do not _
even (dashed graylocalized modes in a self-focusing/&+1)  have their continuous counterparts, and they can only exist
regime: solid, stable; dashed, unstable. Gray shading marks tH§hen the discreteness effects are strong, i.e.| P 7.
transmission band. Bottom: profiles of the localized modes correProperties of the twisted modes depend on the separation
sponding to the marked pointa) and(b) in the top plot; black dots, between the modes forming a bound state. We consider the
analytical approximation for the node amplitudes. The lattice pacases of two lowest-order solutions @f “even” type with
rameters are the same as in Fig. 2. zero nodesri=0) in between the peaks, afid) “odd” type
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1 T T T T T T T T 0.6 T T T T T T T T T
0.5 \ _ L odd !
= 0 04— , cven .
E I @ L ' i
05 ! - =
1 ) L | . | . | 021= ]
-30 20 | 10 0 10 L (a) i
I
40 T } 0 1 I 1 | 1 | 1 | 1
T i | : — 0 1 2 3 4 5
b } 3 T T T T T T T T T
[0} = |
= : I even 7
+ F I T 2 n
. g odd
-40 L -
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FIG. 12. Example of a resonance between an eigenmode of the . | . | . | . | .
linear eigenvalue problem and a band-gap edge of the continuou 0 1 2 3 4 5
spectrum that leads to an oscillatory instability of the odd localized }\‘

mode (parameters correspond to Fig.)11

FIG. 14. Dependence dB) the shift parameteng and (b) the
with one node h=1) at the middle, withUy,=0. The peak normalized amplitude, in Egs.(32) and(33) on the param-
corresponding  symmetry  properties  areUj, eter\, for pdd and even twisted localized modes. Dashed lines in
= — X" U _|y -1 Additionally, Eq.(27) also holds, so that (b), numerically calculated values.
we only have to construct solutions fqr=+1. Then, the

soliton tails atn>m are approximated as o ) )
where U(n;ny) is given by EQq.(29). The matching condi-

U,=U(n—m;ny), (32) tions are

—(3=m+MUp+Up 1 +U3=0,

(33
~(24+MUms1+ Ut Ui+ Ud, =0,

where, as beforey = —(7+2)>0.

We determine the solution of Eg&3) starting with the
highly localized modes described earlier in the anticontinu-
ous limit (\>1) [27], and then gradually decrease the pa-
rametern. We find that the solution exists far>\ >0, and
disappears wheng(\.)=0. Substituting this condition into
Eq. (33), we determine the approximate critical parameter
values,n.(m=0)=3.32 andy.(m=1)=2.95. Theanalyti-
cally determined existence regions agree very well with nu-
merical results(within 1%). To the best of our knowledge,
none of the previously developed analytical approximations
could predict the regions of existence for highly discrete
twisted modegwith small m). Moreover, the approximate
solution describes very accurately the profiles of the twisted
modes, see examples in Figs.(d5and 1%b) and 16&a) and
16(b). In particular, a relative error for the peak amplitude
U, is less than 0.5%, so that in Fig. (b} the analytical and
numerical dependencies practically coincide.

In the self-focusing regime, stability properties of the
/////// X twisted modes in the IR gap can be similar to those identified
earlier in the framework of a DNLS modg27]. In the ex-
A ample shown in Fig. 15, the modes are stable at larger values
of the propagation constant, and they become oscillatory un-

FIG. 13. Instability development for the Bragg-type localized Stable closer to the boundary of the existence region. Quite
modes in a self-defocusing mediuii@ symmetry-breaking insta- importantly, the stability region is much wider in the case of
bility of an even mode RP=3.23); (b) oscillatory instability of an  odd twisted modes due to a larger separation between the
odd mode P=23.4). Parameters correspond to Fig. 11. individual solitons of the bound state.

=

—

.
= =

=

=

=

=

—

==

== e

=

==
=~

|

——————

-

|

L

==

=)

=

\

=

7

-

036609-10



SPATIAL OPTICAL SOLITONS IN NONLINEAR . .. PHYSICAL REVIEW E 65 036609
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30 40 50 60 B 70 80 40
x+h/2 X X
FIG. 15. Top: power vs propagation constant for Gollcick and F|G 16. Top: POWEF VS propaggtion constant f.OI' the Odd.tWiStEd
even (gray) twisted localized waves in a self-focusing +1)  localized waves in a self-defocusing'{ —1) regime. Notations
regime. Notations are the same as in Figs. 10 and 11. are the same as in Figs. 10 and 11.

The characteristics of the twisted modes in the BR gaghe help of a symmetry transformatia@7). However, the
can differ substantially from the previous case. First, thestability properties of these two types of localized states can
value of 7 is limited from above ( 7< 7., and, there- be quite different. Indeed, it has been demonstrated in Sec.
fore, some families of the twisted modes with<m,, may |V that in a self-focusing mediumy= +1) the staggered
not exist. For example, for the medium parameters correbackground can become unstable. On the contrary, the un-
sponding to Fig. @), we have 7.(m=1)<(7mx=3.18) staggered background is always stablg # — 1.
<ns(mMm=0), so thatm,=1. Under these conditions, even
modes withm=0 cannot exist in the BR regime. On the
other hand, the odd modes with—= 1 can exist, and they are
stable in a wide parameter region, see Fig. 16. Development
of oscillatory instabilities for IR and BR twisted modes is
illustrated in Figs. 17@) and 17b), respectively. In both the
cases, we observe an exponential increase of periodic ampli-
tude modulations and the emission of radiation waves.

VI. DARK SPATIAL SOLITONS

Similar to the continuous NLS equation with self-
defocusing nonlinearit}28] or the DNLS equatiof29], our
model can supportlark solitons—localized modes on the
Bloch-wave background. However, dark stationary localized
modes in a periodic medium can exist for both signs of non-
linearity. To be specific, let us consider the case of a back-
ground corresponding to the Bloch-wave solutions with
=0,7 introduced in Sec. IV. Then, dark-mode solutions can
appear at the band-gap edge whegre2 =2 sgnv, since in
such a case nonlinear and dispersion terms have the same
signs[28].

Similar to the case of bright solitons discussed above, two <~/
basic types of dark spatial solitons can be identified, namely, '
odd localized modesentered at a nonlinear thin-film wave-

= —

S

i

\

—

S

W
S
\,§

guide, anceven localized moda®ntered between the neigh- (b) *
boring thin-film waveguides. All such modes satisfy the sym- = -
metry condition, U, = _(_X)S+1U—|n|—1' where s FIG. 17. Instability scenarios for twisted localized mod@gan

=0,1 for even and odd modes, respectively. The BW backeven mode in a self-focusing mediuR+41.22); (b) an odd mode
ground is unstaggered = —1, and it is staggered foy in a self-defocusing regimeP=4.45). Parameters correspond to
=+1; the corresponding solutions can be constructed withFigs. 15 and 16, respectively.
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FIG. 19. Top: complementary power vs propagation constant for
odd (black and even(gray dark localized solitons in a self-
focusing (y= +1) regime. Notations are the same as in Fig. 10, but
(in)stability regions are not indicated.

FIG. 18. Dependence dB) the shift parameteng and (b) the
normalized amplitude§) in Egs. (30), (35), and (36) on the pa-
rameter\ for odd (s=1) and even¢=0) twisted localized modes.
Dashed lines ir(b), are numerically calculated values.

presented in Fig. 18). The soliton amplitudes at the central
sites are shown in Fig. 18), where we observe again an

In order to find the approximate analytical solutions, weexcellent agreement between the approximate analytical and
consider the casg=—1, with no lack of generalitysince  numerical solutionsthe corresponding errors do not exceed
solutions withy=+1 can be obtained by applying the sym- 2% for odd and 1% for even modes
metry transformatiori27)]. In this case, the far-field asymp-  Two types of dark spatial solitons in our model are shown
totics for solutions of Eq(8) close to the background level for both staggered and unstaggered BW backgrounds in Figs.
can be found asU.—U,)=e’", whereU,=+\ is the 19 and 20, respectively. We characterize the family of dark
background amplitudep=cosh }(1+\) is the localization solitons by thecomplimentary powedefined as
parameter, and = n»+2>0. Then, we obtain an approxi-
mate continuous equation for the nonlinear mode tails by

matching the asymptotic solution at large +nh
P.= lim f [lu(x+2nh)|?2=[u(x)|]dx,
2\ d2U N o
o Ud=
AU+ parT U°=0. (34
30
The corresponding dark-soliton solution has the form r .
A’ 15+ —
U(n;ng) = VX tanH p(n+ny)/2]. (35)
Note that in the limit\—0 we havep— 2\, and the results |
of the conventional continuous approximation are recovered 0 20 0 B 20 20

Similar to the discrete bright solitons, a localized solution
can be constructed by matching the soliton tails defined by
Eq. (30). The corresponding matching conditions

(N—3+8)Uy+(1—-s)U;—U3=0,

(A—2)U;+Ug+U,—U3=0 (36) -
x+h/2 X

are used to determine the shift parametgrand amplitude FIG. 20. Top: complementary power vs propagation constant in
Uy. We haveU,=0 for odd modes, due to their symmetry the self-defocusing¥=—1) regime. Notations are the same as in
properties. Dependencies of the shift paramateon \ are  Fig. 19.
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FIG. 21. Propagation dynamics ¢ even and(b) odd dark
localized modes in a self-focusing medium. Initial profiles corre-
spond to slightly perturbed stationary solutiongBat 20, other pa-
rameters correspond to Fig. 19.

wheren is integer. The localized solutions shown in Fig. 20
are similar to those found earlier in R¢80] in the context
of the superflow dynamics on a periodic potential.

PHYSICAL REVIEW E 65 036609

soliton modes are unstable with respect to asymmetric per-
turbations, see an example in Fig.(@1 On the other hand,
odd modes can propagate in a stafile weakly unstable
manner, as illustrated in Fig. &. We note, however, that
dark solitons can exhibit oscillatory instabilities close to the
continuum limit [29] (at small intensities but a detailed
analysis of the dark-mode stability is beyond the scope of the
present paper.

VIl. CONCLUSION

In the framework of a simplified model of a nonlinear
layered medium that describes the so-called Dirac-comb
nonlinear waveguide array, we have analyzed spatial optical
solitons in the form of bright, dark, and “twisted” localized
modes. In general, such solitons are of two types, i.e., they
are either(i) nonlinear guided waves localized due to the
total internal reflection or(ii) the Bragg-type localized
modes existing in the forbidden transmission gaps, gap soli-
tons. We have analyzed the existence and stability of the
nonlinear localized modes of both types and described also
modulational instability of extended modes induced by a pe-
riodic change of the medium refractive index. Additionally,
we have discussed both similarities and differences with the
models described by the DNLS equation, derived in the fre-
quently used tight-binding approximation, and with the re-
sults of the coupled-mode theory, which are valid for a shal-
low modulation and a narrow gap in the transmission
spectrum.
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