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Spatial optical solitons in nonlinear photonic crystals

Andrey A. Sukhorukov and Yuri S. Kivshar
Nonlinear Physics Group, Research School of Physical Sciences and Engineering, Australian National University,
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~Received 6 August 2001; published 13 February 2002!

We study spatial optical solitons in a one-dimensionalnonlinear photonic crystalcreated by an array of
thin-film nonlinear waveguides, the so-called Dirac-comb nonlinear lattice. We analyze modulational instabil-
ity of the extended Bloch-wave modes and also investigate the existence and stability of bright, dark, and
‘‘twisted’’ spatially localized modes in such periodic structures. Additionally, we discuss both similarities and
differences of our general results with the simplified models of nonlinear periodic media described by the
discrete nonlinear Schro¨dinger equation, derived in the tight-binding approximation, and the coupled-mode
theory, valid for shallow periodic modulations of the optical refractive index.

DOI: 10.1103/PhysRevE.65.036609 PACS number~s!: 42.70.Qs, 42.65.Wi, 42.65.Tg
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I. INTRODUCTION

Discrete spatial optical solitonshave been introduced an
studied theoretically as spatially localized modes of perio
optical structures~see, e.g., Refs.@1–4# and also a review
paper@5#!, and they have recently been observed experim
tally in arrays of nonlinear single-mode optical waveguid
@6#. A standard theoretical approach in the study of the d
crete spatial optical solitons is based on the derivation o
effective discrete nonlinear Schro¨dinger ~DNLS! equation
@1#, and the analysis of its stationary localized solutions
discrete localized modes@5#. In the solid-state physics, th
similar approach is known asthe tight-binding approxima-
tion that, in application to optical waveguide arrays, cor
sponds to the case ofweakly coupledfundamental modes
excited in each waveguide of the array. The analogous c
cepts appear in other fields such as the nonlinear dynamic
the Bose-Einstein condensates in optical lattices@7#.

On the other hand, weak nonlinear effects in optical fib
with a periodic modulation of the refractive index~often
calledoptical grating! are well studied in the framework o
another approach,the coupled-mode theory. The coupled-
mode theory is based on a decomposition of the electric fi
into the forward and backward propagating components,
der the condition of the Bragg resonance. Such an appro
is usually applied to analyze nonlinear localized waves in
systems with a weakly modulated optical refractive ind
known asgap (or Bragg) solitons@8#, and such gap soliton
are known to appear in other fields@9#.

Thus, the theory of spatial and temporal optical solitons
periodic structures developed so far is based on one of
two approaches, the DNLS equation or the coupled-m
theory. However, real experiments in the nonlinear guid
wave optics are conducted in the periodic structures of m
complicated geometries and under the conditions when n
of those approximations are valid. In such a case the ap
cability of the tight-binding approach and the correspond
discrete equations, from one hand, and the coupled-m
theory, from the other hand, become questionable, espec
for the analysis of the linear stability of nonlinear localiz
modes. Therefore, a consistent theory of nonlinear effe
and localized modes in periodic media is still missing.
1063-651X/2002/65~3!/036609~14!/$20.00 65 0366
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One of the main features of wave propagation in perio
structures~which follows from the Floquet-Bloch theory! is
the existence of a set of forbidden band gaps in the trans
sion spectrum. Therefore, the nonlinearly induced wave
calization can become possible in each of these gaps. H
ever, the effective DNLS equation derived in the tigh
binding approximation describes only one transmission b
surrounded by two semi-infinite band gaps and, therefor
fine structure of the band-gap spectrum associated with
wave transmission in a periodic medium is lost. On the ot
hand, the coupled-mode theory of gap solitons@8# describes
only the modes localized in an isolated narrow gap, an
does not allow to consider simultaneously the gap modes
conventional guided waves localized due to the total inter
reflection. The complete band-gap structure of the transm
sion spectrum and simultaneous existence of localized mo
of different types are very important issues in the analysis
the stability of nonlinear localized modes@10#. Such an
analysis is especially important for the theory of nonline
localized modes and nonlinear waveguides in realistic m
els of nonlinear photonic crystals~see, e.g., the recent pap
@11# and references therein!.

In this paper, we consider a simple model of nonline
periodic layered media where a periodic optical structure
formed by an array of thin-film nonlinear waveguides e
bedded into an otherwise linear dielectric medium~see also
Ref. @12#!. Such a structure can be regarded as a nonlin
analog of the so-called Dirac-comb lattice@13#, where the
effects of the linear periodicity and band-gap spectrum
taken into account explicitly, whereas nonlinear effects en
the corresponding matching conditions allowing a direct a
lytical study.

We analyze nonlinear localized modes in an infinite str
ture consisting of a periodic array of nonlinear waveguid
similar to the geometry of the experiments with discrete o
tical solitons@6#. First, we study modulational instability o
extended modes in both self-focusing and self-defocus
regimes. Then, we discuss different types of nonlinear loc
ized modes~such as bright, dark, and ‘‘twisted’’ spatial sol
tons! and also analyze numerically their linear stability. W
emphasize both similarities and differences between our
sults and the results obtained in the framework of the DN
equation and the continuous coupled-mode theory.
©2002 The American Physical Society09-1
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ANDREY A. SUKHORUKOV AND YURI S. KIVSHAR PHYSICAL REVIEW E65 036609
II. GENERAL APPROACH

A. Model

We consider the electromagnetic waves propagating a
the Z direction of a slab-waveguide structure created b
periodic array of thin-film nonlinear waveguides~see Fig. 1!.
Assuming that the field structure in theY direction is defined
by the linear guided mode of the slab waveguideE(Y), we
separate the dimensions presenting the electric field
E(X,Z)E(Y). Then, the evolution of the complex field env
lope E(X,Z) is governed by the nonlinear Schro¨dinger
~NLS! equation,

i
]E

]Z
1D

]2E

]X2 1«~X!E1g~X!uEu2E50, ~1!

where D is the diffraction coefficient (D.0). The weak
modulation of linear refractive index in the transverse dir
tion is defined by the function«(X), whereasg(X) charac-
terizes the Kerr-type nonlinear response of the layers.
assume that either the function«(X) or g(X) ~or both of
them! is periodic inX, i.e., it describes the periodic layere
structure similar to the so-called transverse Bra
waveguides created by the nonlinear thin-film multilay
structures@14,15# or the impurity band in a deep photon
band gap@16#.

In order to reduce the number of physical parameters,
normalize Eq.~1! as follows:E(X,Z)5c(x,z)E0ei ēZ, where
«̄ is the mean value of the function«(X), x5X/d and z
5ZD/d2 are the dimensionless coordinates,d andE0 are the
characteristic transverse scale and field amplitude, res
tively. Then, the normalized nonlinear equation has the fo

i
]c

]z
1

]2c

]x2 1F~ I ;x!c50, ~2!

where the real function F(I ;x)5d2D21@«(X)2 «̄
1g(X)I uE0u2# describes bothnonlinear and periodic prop-
erties of the layered medium, andI[ucu2 is the normalized
local wave intensity. We note that the system~2! is Hamil-
tonian, and for spatially localized solutions it conserves
total power,

FIG. 1. Array of thin-film nonlinear waveguides embedded in
a linear slab waveguide. Gray shading shows a profile of a non
ear localized mode.
03660
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uc~x,z!u2 dx.

At this point, it is important to mention that Eq.~2! de-
scribes the beam evolution in the framework of the so-ca
parabolic approximation, valid for the waves propagating
mainly along thez direction ~see also Ref.@17# and discus-
sions therein!. In other words, the characteristic length of th
beam distortion due to both diffraction and refraction alo
the z axis should be much larger than the beam width in
transverse directionx. This leads to the condition ofa weakly
modulated periodicity, u«(X)2 «̄u!u«̄u.

We look for stationary localized solutions of the norma
ized Eq.~2! in the standard form

c~x,z!5u~x;b!eibz, ~3!

whereb is the propagation constant, and the amplitude fu
tion u(x;b) satisfies the stationary nonlinear equation

2bu1
d2u

dx2 1F~ I ;x!u50. ~4!

If there is no energy flow along the transverse directionx,
then the functionu(x) is real, up to a constant phase that c
be removed by a coordinate shiftz→z2z0 . This is always
the case for spatially localized solutions with vanishing
ymptotics,u(x→6`)50.

To simplify our analysis further, we assume that the line
periodicity is associated only with the presence of an array
the thin-film waveguides, and define the response functio
the model Eq.~2! as follows:

F~ I ;x!5 (
n52`

1`

~a1gI !d~x2hn!, ~5!

where h is the spacing between the neighboring thin-fi
waveguides~the lattice period!, andn is the integer. The tota
response of the thin-film layers is approximated by thed
functions, and the real parametersa and g describe both
linear and nonlinear properties of the layer, respectivel
Without loss of generality, the nonlinear coefficientg can be
normalized to unity, so thatg511 corresponds toself-
focusingandg521 to self-defocusingnonlinearity. The lin-
ear coefficient (a.0) defines the low-intensity respons
and it characterizes the corresponding coupling strength
tween the waveguides. Models~2! and~5! can be regarded a
a nonlinear analog of the Dirac-comb lattice, earlier stud
in application to the photonic crystals in the linear regim
only @13#.

B. Dispersion properties and discrete equations

Following the path outlined in Ref.@17#, we present the
stationary modes defined by Eqs.~4! and~5! as a sum of the
counterpropagating waves in each of the linear s
waveguides,

u~x!5ane2m~x2nh!1bne1m~x2nh!, ~6!

-

9-2
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SPATIAL OPTICAL SOLITONS IN NONLINEAR . . . PHYSICAL REVIEW E 65 036609
where nh<x<(n11)h. Then, we express the coefficien
an andbn in terms of the wave amplitudes at the nonline
layers,un5u(hn),

an5
unemh2un11

2 sinh~mh!
,

~7!
bn5un2an ,

where m(b)5Ab. Finally, we substitute Eqs.~6! and ~7!
into Eqs.~4! and~5!, and find that the normalized amplitude
Un5Aujguun satisfy a stationary form of the DNLS equa
tion,

hUn1~Un211Un11!1xuUnu2Un50, ~8!

wherex5sgn(jg), and

h~b!522 cosh~mh!1aj~b!,
~9!

j~b!5sinh~mh!/m.

Linear solutions of Eq.~8! ~when the term;xuUnu2
vanishes! have the form Un5U0eiKn, where K
56cos21(2h/2) is the wave number. Therefore, extend
linear solutions with realK can exist foruhu<2. On the other
hand, nonlinear localized modes with exponentially decay
asymptotics can appear only foruhu.2 ~when K is imagi-
nary!, this condition defines theband-gap structure of the
spectrum. Characteristic dependencies ofh and j vs the
propagation constantb are presented in Fig. 2, where th
bands are shown by a gray shading. The first~semi-infinite!
band gap corresponds to the totalinternal reflection~IR!. On
the other hand, at smallerb the spectrum band gapsappear
due to the resonant Bragg-type reflection~BR! from the pe-
riodic structure.

FIG. 2. Characteristic dependencies of the parametersh and j
on the propagation constantb. Gray shading marks the transmissio
bands. The lattice parameters areh50.5 anda510.
03660
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C. Linear stability analysis

To study linear stability of localized modes, we should
consider the evolution of small-amplitude perturbations
the localized state presenting the solution in the form

c~x,z!5$u~x!1v~x!eiGz1w* ~x!e2 iG* z%eibz. ~10!

From Eqs.~2! and~5!, we obtain the linear eigenvalue prob
lem for smallv(x) andw(x),

2~b1G!v1
d2v
dx2 1 (

n52`

1`

@~a12guunu2!v1gun
2w#

3d~x2hn!50,
~11!

2~b2G!w1
d2w

dx2 1 (
n52`

1`

@~a12guunu2!w1g~un* !2v#

3d~x2hn!50.

After representing the fields as sums of the counterpropa
ing waves~see Sec. II B!, we reduce Eqs.~11! to a set of the
discrete equations for the amplitudes at the layers,

h~b1G!vn1~vn211vn11!

1gj~b1G!@2uunu2vn1un
2wn#50,

~12!
h~b2G!wn1~wn211un11!

1gj~b2G!@2uunu2wn1~un* !2vn#50.

In general, the solutions of this eigenvalue problem fall in
one of the following categories:~i! internal modeswith real
eigenvalues that describe periodic oscillations~‘‘breathing’’!
of the localized state,~ii ! instability modesthat correspond to
purely imaginary eigenvalues with ImG,0, and~iii ! oscilla-
tory unstable modesthat appear when the eigenvalues a
complex~and ImG,0!. Additionally, there can exist decay
ing modes when ImG.0. However, from the structure o
Eqs.~12! it follows that the eigenvalue spectrum is invaria
with respect to the transformationG→6G* , if all the am-
plitudes uneif are real, wheref is an arbitrary constan
phase. In such a case exponentially growing and deca
modes always coexist, and the latter do not significantly
fect the wave dynamics.

It is important to note that the grating properties are e
pressed through the functionsh~b! andj~b! @see Eq.~9!# in
both the stationary@Eq. ~8!# and perturbation@Eq. ~12!#
equations. Therefore, the functionsh~b! andj~b! fully char-
acterize the existence and linear stability properties of loc
ized and extended solutions of the original models~2! and
~5! with stationary intensity profiles.

III. APPROXIMATE MODELS

A. Tight-binding approximation

When each of the thin-film waveguides of the period
structure supports a fundamental mode that weakly over
with the similar mode of the neighboring waveguide, t
9-3
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ANDREY A. SUKHORUKOV AND YURI S. KIVSHAR PHYSICAL REVIEW E65 036609
modes become weakly coupled via a small change of
refractive index in the waveguides. Then, the mode prop
ties can be analyzed in the framework of the so-calledtight-
binding approximation, well developed for the problems o
solid-state physics@18#.

In order to employ this approximation in our case, first w
analyze the properties of a single thin-film waveguide in
linear regime and solve Eq.~4! with F(I ;x)5ad(x) to find
the spatial profile of a linear guided mode

us~x!5exp~2auxu/2!

and the corresponding value of its propagation constantbs
5a2/4. Second, we consider the interaction between
waveguides in the array assuming that the total field can
presented as a superposition of slightly perturbed waves
calized at the isolated waveguides. Specifically, we ass
that the propagation constant remains close to its un
turbed valuebs ~i.e., u idc/dt1bscu!ubscu!, and neglect
small variations in the spatial profiles of the localized mod
Then, we seek a general solution of Eqs.~2! and ~5! in the
form

c~x,z!5 (
n52`

1`

cn~z!us~x2nh!. ~13!

In such an approximation, the wave evolution is charac
ized by the amplitude functionscn(z) only. In order to find
the corresponding evolutionary equations, we substitute
~13! into Eqs.~2! and~5! and, multiplying the resulting equa
tion by us(x2mh), integrate it over the transverse profil
According to the original assumption of weakly interacti
waveguides~valid for ah@1 and uguucn(z)u2!a!, in the
lowest-order approximation we putuc(nh,z)u2.ucn(z)u2

and neglect the overlap integrals,*2`
1`us(x2nh)us(x

2mh)dx, with un2mu.1, which produce the terms o
higher orders. Finally, we derive a system of coupled disc
equations for the field amplitudes at the nonlinear layers@up
to small perturbations, sincec(nh,z)5cn(z)1O(e2ah/2)#,

i
dcn

dz
1bscn1

a2

2
e2ah/2~cn211cn11!1

ga

2
ucnu2cn50.

~14!

Stationary solutions of Eq.~14! have the formcn5uneibz,
where the amplitudesun are given by Eq.~8! with

h52
2

a2 S b2
a2

4 Deah/2, j5
1

a
eah/2. ~15!

Relations~15! can be found as a series expansion of
original dispersion relations~9! near the edges of the firs
transmission band, in the limitah@1.

B. Coupled-mode theory

Now we consider the opposite limitah!1, when the first
Bragg-reflection gap is narrow, i.e., (b12b2)!ub1,2u, where
b1,2 are the propagation constants at the gap edges, de
by the conditionh(b1,2)[2. From Eq.~9! it follows that
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b252(p/h)2 and b1.b212a/h1O(a3/2). To find solu-
tions close to the BR gap, we present the total field in
form

c~x,z!5a1~x,z!ub~x;b1!1a2~x,z!ub~x;b2!, ~16!

whereaj are unknown nonlinear amplitudes, andub(x;b1,2)
are the linear Bloch functions which satisfy Eqs.~4! and~5!
at g50. The Bloch functions can be found in an explic
form: ub(x;b2)5sin(xp/h), and ub(x1nh;b1)5
(21)n sin@(h/22x)Aub1u# for 0<x<h. Note that the field
amplitudes at the layers areun;(21)na1(nh), since
ub(nh;b2)[0.

In order to find the equations for the amplitudesaj (x,z),
we substitute Eq.~16! into the original model Eqs.~2! and
~5!. Next, we use the fact that the gap is narrow, and clos
its edges the Bloch functions are weakly modulated, i
u]a1,2/]xu!ua1,2/hu. This assumption allows us to keep on
the lowest-order terms. Then, we multiply the resulting eq
tion by ub(x;b1,2) and integrate it over one grating perio
Finally, the coupled equations for the modulation amplitud
are

i
]a1

]z
1b1a11

2p

h

]a2

]x
1g

2

h
ua1u2a150,

i
]a2

]z
1b2a22

2p

h

]a1

]x
50. ~17!

Equations~17! derived above allow a direct compariso
between the coupled-mode theory and the general result
the stationary localized solutions for whicha1,2(x,z)
5a1,2(x)eibz. Additionally, since the functionsaj are weakly
modulated, the spatial derivatives can be approximated
finite differences between the amplitudes at the layers~note
that such an approximation is only valid forb.b1,2!. After
simple algebra we obtain a discrete equation for the fi
amplitudes at the layers, which has the form of the DN
Eq. ~8! with

h~b!522
h4

4p2 ~b2b1!~b2b2!,

j~b!5
h3

2p2 ~b2b2!. ~18!

Similar to the case of the tight-binding approximation, t
dispersion relations~18! can be found from the general resu
~9! by performing a series expansion near the band e
valueb2 .

C. Two-component discrete model

The principal limitations of both the tight-binding ap
proximation and the coupled-mode theory is explained
the fact that they are both valid in local narrow regions of t
general band-gap structure and under special assumpt
Indeed, these two approaches are applicable when the dim
sionless parameterah is either small or large, and none o
those approaches covers the intermediate cases. While a
9-4
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SPATIAL OPTICAL SOLITONS IN NONLINEAR . . . PHYSICAL REVIEW E 65 036609
eral study should rely on the numerical solutions with t
exact dispersion relations~9!, it is useful to consider a sim
plified model that can~at least, qualitatively! describe the
wave properties close to the BR gap (b.b1) in the transi-
tional region, being valid forah.1 as well. To achieve this
goal,we extend the tight-binding approximation and the c
respondingDNLS equation introduced above in Sec. III A

We note that Eq.~14! can be considered as a rough d
cretization of the original model~2!, with only one node per
grating period located atx5nh. Then, the natural general
zation is to include additional nodes located between
nonlinear layers at the positionsx5(n1 1

2 )h. Since the re-
fractive indices at the node position are now different,
obtaina new system of coupled discrete equationsthat cor-
respond to a two-component superlattice,

i
dcn

dz
1b1cn1r1~cn21/21cn11/2!1g̃ucnu2cn50,

~19!

i
dcn11/2

dz
1b2cn11/21r2~cn1cn11!50.

We find that, similar to the general case, the stationary m
profiles can be expressed in terms of the amplitudesun ,
which satisfy the normalized DNLS Eq.~8! with the follow-
ing parameters:

h~b!522~r1r2!21~b2b1!~b2b2!,
~20!

j~b!5g̃g21~r1r2!21~b2b2!.

One can immediately see that our new model~19! de-
scribes an effective system with a semi-infinite IR gap an
BR gap of a finite width. We note that, although dispers
relations in Eqs.~20! and~18! look similar, the latter relation
is only valid for b.b1,2, so that the coupled-mode theo
describes only a single isolated Bragg-reflection gap. Th
fore, the model~19! provides an important generalization
the DNLS theory, which also has a wider applicability th
the coupled-mode theory.

Because the model~19! describes an extra gap in th
transmission spectrum, a comparison with the original mo
becomes more complicated. We choose the model par
etersr j and g̃ in order to match the dispersion relations
the vicinity of b1 , and satisfy a relation betweenun and
un11/2 following from Eqs.~6! and ~7!:

r1522 cosh~Ab1h/2!/~dh/db!b1
,

r25~b12b2!/@2 cosh~Ab1h/2!#, ~21!

g̃52gj~b1!/~dh/db!b1
,

where the functionsh~b! and j~b! should be calculated ac
cording to Eq.~9!.
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The three different approximate models discussed ab
allow a simple analysis of the limiting cases, and they will
used below in calculating different properties of the extend
and localized modes.

IV. MODULATIONAL INSTABILITY

A. General analysis

First, we analyze the properties of the simplest exten
~plane-wave! solutions of the model~2! and ~5! that have
equal intensities at the nonlinear layers,I 05uunu25const,
and correspond tothe first transmission band. These solu-
tions have the form of the so-called Bloch waves~BWs! un
5u0eiKn, where the wave numberK is selected in the first
Brillouin zone,uKu<p. Using Eq.~8!, we find the dispersion
relation asK56cos21@h(b;ã)#, whereã5(a1gI 0

2) defines
the layers response modified by nonlinearity. Since the tra
mission bands are defined by the conditionuhu,2 ~see Sec.
II B !, the band structure shifts as intensity increases. Inde
by resolving the dispersion relation we determine a relat
between the propagation constant and the wave intensity

I 0~b!52
@2 cosK1h~b!#

gj~b!
. ~22!

Since in the first transmission bandb.2(p/h)2, we have
j(b).0 ~see also Fig. 2!, and it follows from Eq.~9! that
the propagation constantb increases at higher intensities in
self-focusing medium (g.0), and decreases in a sel
defocusing medium (g,0).

One of the main problems associated with the nonlin
BW modes is theirinstability to periodic modulationsof a
certain wavelength, known asmodulational instability~see
also@19#!. In order to describe the stability properties of th
periodic BW solutions, we analyze the evolution of we
perturbations described by the eigenvalue problem~12!. Due
to periodicity of the background solutionu(x), it follows
from the Bloch theorem that the eigenmodes of Eq.~12!
should also be periodic, i.e.,v(x1h)5v(x)ei (q1K) and
w(x1h)5w(x)ei (q2K). Then, we obtain the following solv
ability condition:

@h~b1G!12gj~b1G!I 012 cos~q1K !#

3@h~b2G!12gj~b2G!I 012 cos~q2K !#

5g2j~b1G!j~b2G!I 0
2. ~23!

Possible eigenvaluesG are determined from the conditio
that the spatial modulation frequenciesq, which are found
from Eq. ~23!, are all real. Therefore, the eigenvalue spe
trum consists of bands, and the instability growth rate c
only change continuously from zero to some maximu
value. We also note that the spectrum possesses a symm
G→6G* , and it is sufficient to study only the solutions wit
ReG>0.
9-5
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ANDREY A. SUKHORUKOV AND YURI S. KIVSHAR PHYSICAL REVIEW E65 036609
B. Stability of staggered and unstaggered modes

In what follows, we consider two characteristic cases
the stationary nonlinear BW modes, when they are~i! un-
staggered (K50) or ~ii ! staggered (K5p). To describe a
transition from purely real to complex linear eigenvalues,
consider the function

Q~G!5cos@q~G!#,

defined from Eq.~23!, and extend the solution from the re
axis to the complex plane by writing a series expansion:

Q~ReG1 i Im G!5Q~ReG!1Q8~ReG!~ i Im G!

1~ 1
2 !Q9~ReG!~ i Im G!21O„Im G)3

…,

where the prime denotes differentiation with respect to
argument. Since the modulation frequency should rem
real, the second term in the series expansion should va
Then, we conclude that complex eigenvalues only appea
the critical points, where

Q8~G!50. ~24!

Therefore, ~in!stability can be predicted by studying th
function Q(G) on the real axis only, and then extending t
solution to the complex plane at the critical points~if they
are present! determined by Eq.~24!. The real modulation
frequencies are found asq5cos21(Q) in the interval 21
<Q<1, therefore, modulational instability~MI ! only ap-
pears at the critical points where q8(G)50 or q50,p, see
an example in Fig. 3.

Some particular cases of the modulational instability
the nonlinear Bloch waves in a periodic medium have b
earlier studied for the Bose-Einstein condensates in op
lattices @19# in the mean-field approximation based on t
Gross-Pitaevskii equation, which is mathematically equi
lent to Eq.~2! with F(I ;x)5n(x)1gI . It was demonstrated
that theunstaggered modes are always modulationally u
stable in a self-focusing medium(x5sgng511), and they

FIG. 3. Modulation frequencyq vs real ~left! and imaginary
~right! parts of the perturbation eigenvalueG, for the staggered BW
modes in a self-focusing medium (K5p, b57, a53, h50.5, g
511). Solid lines, stable (ImG50) and dashed, unstable (ImG
Þ0).
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are stable in a self-defocusing medium(x521). It can be
shown that the similar results are also valid for our mod
Indeed, since the unstaggered waves are the fundam
modes of the self-induced periodic potential, oscillatory
stabilities cannot occur, and MI can only correspond
purely imaginary eigenvaluesG. Such an instability should
appear at the critical points defined by Eq.~24! at G50,
which are found asQ51,h13. Therefore, the range of th
unstable modulation frequencies is

0,q,cos21~h13!, 24<h,22,

0,q<p, 2h,24.

According to Eq.~22!, for unstaggered modes we havexh
,22x, and the~in!stability results follow immediately. We
note that at small intensities~whenh.22! the modulational
instability in a self-focusing medium corresponds to lon
wave modulations, as illustrated in Fig. 4.

The staggered BW modes in a self-defocusing med
(x521) are also modulationally unstable@19#. This hap-
pens because the staggered waves experience effect
‘‘normal’’ diffraction @20#. Such waves exist forh.2 and,
similar to the case of unstaggered waves in a self-focus
medium, we identify the range of unstable frequencies c
responding to the purely imaginary eigenvalues (ReG50),

0,q,cos21~32h!, 2,h<4,

0,q<p, h.4.

Finally, we analyze stability ofstaggered BW modes in
self-focusing medium(x511). Since such modes exist fo
h,2, the domain 1,Q(G),32h at ReG50 does not cor-
respond to physically possible modulation frequencies. Ho
ever, the oscillatory instabilities~i.e., those with complexG!
can appear due to resonances between the modes that b
to different bands. Such instabilities appear in a certain
gion of the wave intensities in the case of shallow modu

FIG. 4. Development of modulational instability in a sel
focusing medium for a perturbed unstaggered nonlinear BW m
with I 0.0.44 ~a53, h50.5, andg511!.
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SPATIAL OPTICAL SOLITONS IN NONLINEAR . . . PHYSICAL REVIEW E 65 036609
tions, below a certain threshold value~when ah<3.57̄ !,
as shown in Fig. 5. We find the following asymptotic expre
sion for the low-intensity instability threshold,

gI 0
~min!.a12A2ha3/2/p1O~a2!, ~25!

while the upper boundary is given by the relation

a.4gI 0
~max! exp~2gI 0

~max!h/4!. ~26!

These analytical estimates are shown with the dashed line
Fig. 5.

It is interesting to compare our results with those obtain
in the framework of the continuous coupled-mode the
~see Sec. III B!, valid for the case of a narrow band gap~i.e.,
for small a and smallI 0!. Although the nonlinear coupling
coefficients in Eq.~17! are different compared to a couple
mode model for shallow gratings@21#, the key stability result
remains the same, and the oscillatory instability appe
above a certain critical intensity proportional to the band-g
width. In our case, the band-gap width is 2a/h1O(a3/2),
and we observe a good agreement with the results of
coupled-mode theory. However, the coupled-mode mo
~17! cannot predict the stability region at high intensitie
since in this region the approximation is no longer valid.

In the limit of largea, the BW dynamics can be studie
with the help of the tight-binding approximation~see Sec.
III A !. Then, the effective discrete NLS equation~14! pre-
dicts the stability of the staggered modes in a self-focus
medium@22#. Numerical and analytical results confirm th
our solutions are indeed stable in the corresponding par
eter region.

The two-component discrete model introduced in S
III C predicts the existence of oscillatory instabilities of th
BW waves forb satisfying the inequality

FIG. 5. Modulationally unstable staggered BW modes~gray
shading! in a self-focusing medium, shown as the intensityI 0 vs the
parametera ~at h50.5, g511!. Dashed lines are the analytica
approximations~25! and~26! for the low- and high-intensity insta
bility thresholds, respectively.
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1
2 ~b2b2!2

~b2b2!3

32r1r2
2~b12b2!.0,

where the coefficientsr1,2 are defined in Eq.~21!. The cor-
responding instability region in the parameter space inten
vs lattice depth~a! can be calculated using Eqs.~22! and
~20!, and the result is presented in Fig. 6. Since the sim
fied model is~asymptotically! correct only for small intensi-
ties ~i.e., whenb.b1!, there is no quantitative agreeme
between Figs. 5 and 6. However, the model~19! does predict
the key pattern of oscillatory MI:~i! instability appears only
for a finite range of intensities when the grating depth~a! is
below a critical value, and~ii ! MI is completely suppressed
for large a. Thus, unlike the DNLS equation, the two
component discrete model~19! predicts qualitatively all ma-
jor features of MI in a periodic medium.

We find that in a self-focusing medium the stagger
waves (K5p) are always stable with respect to low
frequency modulations, see Fig. 7. However, at larger int
sities unstable frequencies appear close to the middle and
edge of the Brillouin zone, and they are shifted towards
edge,q5p, having there the largest instability growth rat
The corresponding modulational instability manifests its
through the development of the period-doubling modu
tions, as shown in Fig. 8.

V. BRIGHT SPATIAL SOLITONS

A. Odd and even localized modes

Stationary localized modes in the form of discrete brig
solitons can exist with the propagation constant inside
band gaps, whenuhu.2. Additionally, such solutions can
exist only if the nonlinearity and dispersion sign are diffe
ent, i.e., whenhx,22. It follows from Eq. ~9!, that b.
2(p/h)2 andj.0 in the IR gap and the first BR gap~see
also Fig. 2!, so that the type of the nonlinear response
fixed by the medium characteristics, sincex5sgn(g). There-

FIG. 6. Region of modulational instability~gray shading! for the
model ~19!; notations are the same as in Fig. 5. The result is o
qualitatively similar to Fig. 5, since the two-component discre
model ~19! is asymptotically correct for small intensities only.
9-7
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ANDREY A. SUKHORUKOV AND YURI S. KIVSHAR PHYSICAL REVIEW E65 036609
fore, self-focusing nonlinearity can support bright solitons
the IR region ~where h,22!, i.e., in the conventiona
waveguiding regime. In the case of the self-defocusing r
sponse, bright solitons can exist in the first BR gap, owing
the fact that the sign of the effective diffraction is invert
(h.2). In the latter case, the mode localization occurs
the so-calledantiwaveguiding regime.

Let us now consider the properties of two basic types
the localized modes:odd, centered at a nonlinear thin-film
waveguide, andeven, centered between the neighborin
waveguides, so thatU unu5xsU2unu2s , wheres50,1, respec-
tively. For discrete lattices, such solutions have already b
studied in the literature~see, e.g., Ref.@23#!, and it has been
found that the mode profile is ‘‘unstaggered’’~i.e., Un.0! if
h,22. On the other hand, Eq.~8! possesses a symmetry

Un→~21!nUn , h→2h, x→2x, ~27!

FIG. 7. Unstable modulation frequencies~gray shading! vs in-
tensity I 0 , for the staggered BW modes (a53, h50.5, g511).
The solid line shows the parameters of the linear eigenmode
the largest instability growth rate~i.e., maxuIm Gu!.

FIG. 8. Development of the instability-induced period-doubli
modulations. Initial profile corresponds to a slightly perturbed st
gered mode withI 0.29.87. Parameters are the same as in Fig.
03660
o
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which means that the solutions become ‘‘staggered’’ ath
.2. Due to this symmetry, it is sufficient to find localize
solutions of Eq.~8! for h,22 and x511. The known
approximate solutions give accurate results only in the c
of highly localized modes (uhu@2) ~see@5,24#, and refer-
ences therein! and in the continuous limit (uhu.2) ~see, e.g.,
@3#!. In order to describe the mode profile for arbitrary valu
of h, we introduce anew approach based on the physic
properties of localized solutions. We recall that the nonlinea
localized modes are similar to the impurity states, which
plains the presence of a sharp central peak~or two peaks! in
the mode profiles at largeh. On the other hand, we hav
found that the tails of a localized mode are always qu
smooth, both in the continuous limit and highly discrete ca
Based on these facts, we construct the approximate solut
by matching the mode tails with the central impurity node~s!.

First, we have to find an approximation for the mode ta
Since the tail is smooth, its profile can be well approxima
by the continuous equations. The simplest yet effective
proach is to choose the model coefficients to match the
crete solutions at the beginning of the tail, which we defi
as thezero concavity point, and in thelinear limit corre-
sponding to the far-field asymptotics. Then, after simple c
culations, we obtain anapproximate continuous equation fo
the mode tails

2lU1
l

r2

d2U

dn2 1U350, ~28!

wherel52(h12).0, andr5cosh21(11l/2). The solu-
tion of Eq. ~28! with the vanishing far-field asymptotics ha
the form

U~n;ns!5A2l sech„r~n1ns!…, ~29!

where the free parameterns defines the shift. Note that in th
limit l→0 we haver→Al, and the results of the conven
tional continuous approximation@1# are recovered.

Second, we have to construct the full approximate so
tion as a combination of two tails. Such a state is suppor
by the central node in odd modes (U0), and by two nodes in
the case of even topology (U215xU0). Since the profiles
are symmetric, we have to calculate the field structure o
for n>0, and the discrete tail profiles forn>1 can be ap-
proximated as

Un5U~n;ns!, ~30!

where the functionU(n;ns) is given by Eq.~29!. In order to
determine the unknown parameters, the peak amplitudeU0
and shiftns , we should solve the original discrete Eq.~8! at
the soliton peak (n50) and at the neighboring site (n51),

2~22s1l!U01~22s!U11U0
350,

2~21l!U11U01U21U1
350, ~31!

where we took into account the symmetry properties of o
and even modes. We find that for alll.0 there exists a
solution that belongs to a smooth branch, starting withns

th

-
.
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SPATIAL OPTICAL SOLITONS IN NONLINEAR . . . PHYSICAL REVIEW E 65 036609
5s/2 in the continuous limit~at l→0!, see Fig. 9~a!. We
compare the analytical approximation with the exact num
cal solution of the original model~8! for the peak amplitude
U0 , and find that an error does not exceed 1.5% for odd
0.8% for even modes. As a matter of fact, the correspond
curves are indistinguishable in Fig. 9~b!. The actual mode
profiles are also adequately represented, see example
Figs. 10~a! and 10~b! and 11~a! and 11~b!. Therefore, the
suggested analytical procedure allows us to obtain extrem
accurate approximate analytical solutions in the whole

FIG. 9. Dependence of~a! the shift parameterns and ~b! peak
normalized amplitudeU0 in Eqs.~30! and~31! on the parameterl
for odd and even bright localized modes. Dashed lines in~b!, nu-
merically calculated values.

FIG. 10. Top: power vs propagation constant for odd~black! and
even ~dashed gray! localized modes in a self-focusing (g511)
regime: solid, stable; dashed, unstable. Gray shading marks
transmission band. Bottom: profiles of the localized modes co
sponding to the marked points~a! and~b! in the top plot; black dots,
analytical approximation for the node amplitudes. The lattice
rameters are the same as in Fig. 2.
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rameter range, including the extreme cases of the continu
(l→0) and anticontinuous (l→1`) limits.

Our linear stability analysis reveals that even modes
always unstablewith respect to a translational shift along th
x axis. On the other hand, odd modes are always stable in
self-focusing regime~see Fig. 10, top!, but can exhibitoscil-
latory instabilities in the self-defocusing case when th
power exceeds a certain critical value~see Fig. 11, top!. At
this point, an eigenmode of the linearized problem resona
with the band-gap edge, the value (b2ReG) moves inside
the band, and nonzero imaginary part of the eigenvalue
pears, as illustrated by an example in Fig. 12. Such an in
bility scenario is similar to one earlier identified for gap so
tons @25#, and also for the modes localized at a sing
nonlinear layer in a linear periodic structure@10#. The latter
example demonstrates a deep similarity between the peri
systems with localized and distributed nonlinearities.

Development of both types of instability is demonstrat
in Figs. 13~a! and 13~b!. Transformation of an even mod
into an odd counterpart due to a symmetry-breaking insta
ity is shown in Fig. 13~a!. The effect of oscillatory instability
on an odd mode is quite different: strong radiation is emit
due to a resonant coupling with linear waves outside
band gap, see Fig. 13~b!.

B. Soliton bound states—‘‘twisted’’ modes

Due to a periodic modulation of the medium refracti
index, solitons can form bound states@26#. In particular, the
so-called‘‘twisted’’ localized mode@27# is a combination of
two out-of-phase bright solitons@26#. Such solutions do no
have their continuous counterparts, and they can only e
when the discreteness effects are strong, i.e., foruhu.hcr .
Properties of the twisted modes depend on the separa
between the modes forming a bound state. We consider
cases of two lowest-order solutions of~i! ‘‘even’’ type with
zero nodes (m50) in between the peaks, and~ii ! ‘‘odd’’ type

he
-

-

FIG. 11. Top: power vs propagation constant in the se
defocusing (g521) regime. Dotted, oscillatory unstable mode
other notations are the same as in Fig. 10.
9-9
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ANDREY A. SUKHORUKOV AND YURI S. KIVSHAR PHYSICAL REVIEW E65 036609
with one node (m51) at the middle, withU0[0. The
corresponding symmetry properties areU unu1m
52xm11U2unu21 . Additionally, Eq.~27! also holds, so tha
we only have to construct solutions forx511. Then, the
soliton tails atn.m are approximated as

Un5U~n2m;ns!, ~32!

FIG. 12. Example of a resonance between an eigenmode o
linear eigenvalue problem and a band-gap edge of the contin
spectrum that leads to an oscillatory instability of the odd localiz
mode~parameters correspond to Fig. 11!.

FIG. 13. Instability development for the Bragg-type localiz
modes in a self-defocusing medium:~a! symmetry-breaking insta
bility of an even mode (P.3.23); ~b! oscillatory instability of an
odd mode (P.23.4). Parameters correspond to Fig. 11.
03660
whereU(n;ns) is given by Eq.~29!. The matching condi-
tions are

2~32m1l!Um1Um111Um
3 50,

~33!
2~21l!Um111Um1Um121Um11

3 50,

where, as before,l52(h12).0.
We determine the solution of Eqs.~33! starting with the

highly localized modes described earlier in the anticontin
ous limit (l@1) @27#, and then gradually decrease the p
rameterl. We find that the solution exists forl.lcr.0, and
disappears whenns(lcr)[0. Substituting this condition into
Eq. ~33!, we determine the approximate critical parame
values,hcr(m50).3.32 andhcr(m51).2.95. Theanalyti-
cally determined existence regions agree very well with
merical results~within 1%!. To the best of our knowledge
none of the previously developed analytical approximatio
could predict the regions of existence for highly discre
twisted modes~with small m!. Moreover, the approximate
solution describes very accurately the profiles of the twis
modes, see examples in Figs. 15~a! and 15~b! and 16~a! and
16~b!. In particular, a relative error for the peak amplitud
Um is less than 0.5%, so that in Fig. 14~b! the analytical and
numerical dependencies practically coincide.

In the self-focusing regime, stability properties of th
twisted modes in the IR gap can be similar to those identifi
earlier in the framework of a DNLS model@27#. In the ex-
ample shown in Fig. 15, the modes are stable at larger va
of the propagation constant, and they become oscillatory
stable closer to the boundary of the existence region. Q
importantly, the stability region is much wider in the case
odd twisted modes due to a larger separation between
individual solitons of the bound state.

he
us
d

FIG. 14. Dependence of~a! the shift parameterns and ~b! the
peak normalized amplitudeUm in Eqs.~32! and~33! on the param-
eter l, for odd and even twisted localized modes. Dashed lines
~b!, numerically calculated values.
9-10



a
th

rre

n
e

e
e

is

p

lf-

e
on
c

a

a

tw
e
-
-

m

ck

it

can
ec.

un-

ted

to

SPATIAL OPTICAL SOLITONS IN NONLINEAR . . . PHYSICAL REVIEW E 65 036609
The characteristics of the twisted modes in the BR g
can differ substantially from the previous case. First,
value of h is limited from above (2,h,hmax) and, there-
fore, some families of the twisted modes withm,mcr may
not exist. For example, for the medium parameters co
sponding to Fig. 2~a!, we havehcr(m51),(hmax.3.18)
,hcr(m50), so thatmcr51. Under these conditions, eve
modes withm50 cannot exist in the BR regime. On th
other hand, the odd modes withm51 can exist, and they ar
stable in a wide parameter region, see Fig. 16. Developm
of oscillatory instabilities for IR and BR twisted modes
illustrated in Figs. 17~a! and 17~b!, respectively. In both the
cases, we observe an exponential increase of periodic am
tude modulations and the emission of radiation waves.

VI. DARK SPATIAL SOLITONS

Similar to the continuous NLS equation with se
defocusing nonlinearity@28# or the DNLS equation@29#, our
model can supportdark solitons—localized modes on the
Bloch-wave background. However, dark stationary localiz
modes in a periodic medium can exist for both signs of n
linearity. To be specific, let us consider the case of a ba
ground corresponding to the Bloch-wave solutions withK
50,p introduced in Sec. IV. Then, dark-mode solutions c
appear at the band-gap edge whereh52x52 sgng, since in
such a case nonlinear and dispersion terms have the s
signs@28#.

Similar to the case of bright solitons discussed above,
basic types of dark spatial solitons can be identified, nam
odd localized modescentered at a nonlinear thin-film wave
guide, andeven localized modescentered between the neigh
boring thin-film waveguides. All such modes satisfy the sy
metry condition, U unu1s52(2x)s11U2unu21 , where s
50,1 for even and odd modes, respectively. The BW ba
ground is unstaggered ifx521, and it is staggered forx
511; the corresponding solutions can be constructed w

FIG. 15. Top: power vs propagation constant for odd~black! and
even ~gray! twisted localized waves in a self-focusing (g511)
regime. Notations are the same as in Figs. 10 and 11.
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the help of a symmetry transformation~27!. However, the
stability properties of these two types of localized states
be quite different. Indeed, it has been demonstrated in S
IV that in a self-focusing medium (x511) the staggered
background can become unstable. On the contrary, the
staggered background is always stable ifx521.

FIG. 16. Top: power vs propagation constant for the odd twis
localized waves in a self-defocusing (g521) regime. Notations
are the same as in Figs. 10 and 11.

FIG. 17. Instability scenarios for twisted localized modes:~a! an
even mode in a self-focusing medium (P.1.22); ~b! an odd mode
in a self-defocusing regime (P.4.45). Parameters correspond
Figs. 15 and 16, respectively.
9-11
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ANDREY A. SUKHORUKOV AND YURI S. KIVSHAR PHYSICAL REVIEW E65 036609
In order to find the approximate analytical solutions, w
consider the casex521, with no lack of generality@since
solutions withx511 can be obtained by applying the sym
metry transformation~27!#. In this case, the far-field asymp
totics for solutions of Eq.~8! close to the background leve
can be found as (U`2Un).ern, where U`5Al is the
background amplitude,r5cosh21(11l) is the localization
parameter, andl5h12.0. Then, we obtain an approx
mate continuous equation for the nonlinear mode tails
matching the asymptotic solution at largen,

lU1
2l

r2

d2U

dn2 2U350. ~34!

The corresponding dark-soliton solution has the form

U~n;ns!5Al tanh@r~n1ns!/2#. ~35!

Note that in the limitl→0 we haver→A2l, and the results
of the conventional continuous approximation are recove

Similar to the discrete bright solitons, a localized soluti
can be constructed by matching the soliton tails defined
Eq. ~30!. The corresponding matching conditions

~l231s!U01~12s!U12U0
350,

~l22!U11U01U22U1
350 ~36!

are used to determine the shift parameterns and amplitude
U0 . We haveU0[0 for odd modes, due to their symmet
properties. Dependencies of the shift parameterns on l are

FIG. 18. Dependence of~a! the shift parameterns and ~b! the
normalized amplitudesUs in Eqs. ~30!, ~35!, and ~36! on the pa-
rameterl for odd (s51) and even (s50) twisted localized modes
Dashed lines in~b!, are numerically calculated values.
03660
y
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presented in Fig. 18~a!. The soliton amplitudes at the centr
sites are shown in Fig. 18~b!, where we observe again a
excellent agreement between the approximate analytical
numerical solutions~the corresponding errors do not exce
2% for odd and 1% for even modes!.

Two types of dark spatial solitons in our model are sho
for both staggered and unstaggered BW backgrounds in F
19 and 20, respectively. We characterize the family of d
solitons by thecomplimentary powerdefined as

Pc5 lim
n→1`

E
2nh

1nh

@ uu~x12nh!u22uu~x!u2#dx,

FIG. 19. Top: complementary power vs propagation constant
odd ~black! and even~gray! dark localized solitons in a self
focusing (g511) regime. Notations are the same as in Fig. 10,
~in!stability regions are not indicated.

FIG. 20. Top: complementary power vs propagation constan
the self-defocusing (g521) regime. Notations are the same as
Fig. 19.
9-12
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SPATIAL OPTICAL SOLITONS IN NONLINEAR . . . PHYSICAL REVIEW E 65 036609
wheren is integer. The localized solutions shown in Fig.
are similar to those found earlier in Ref.@30# in the context
of the superflow dynamics on a periodic potential.

Numerical study of the propagation dynamics demo
strates that, similar to the case of bright solitons, even d

FIG. 21. Propagation dynamics of~a! even and~b! odd dark
localized modes in a self-focusing medium. Initial profiles cor
spond to slightly perturbed stationary solutions atb520, other pa-
rameters correspond to Fig. 19.
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soliton modes are unstable with respect to asymmetric
turbations, see an example in Fig. 21~a!. On the other hand
odd modes can propagate in a stable~or weakly unstable!
manner, as illustrated in Fig. 21~b!. We note, however, tha
dark solitons can exhibit oscillatory instabilities close to t
continuum limit @29# ~at small intensities!, but a detailed
analysis of the dark-mode stability is beyond the scope of
present paper.

VII. CONCLUSION

In the framework of a simplified model of a nonlinea
layered medium that describes the so-called Dirac-co
nonlinear waveguide array, we have analyzed spatial opt
solitons in the form of bright, dark, and ‘‘twisted’’ localize
modes. In general, such solitons are of two types, i.e., t
are either~i! nonlinear guided waves localized due to t
total internal reflection or~ii ! the Bragg-type localized
modes existing in the forbidden transmission gaps, gap s
tons. We have analyzed the existence and stability of
nonlinear localized modes of both types and described
modulational instability of extended modes induced by a
riodic change of the medium refractive index. Additional
we have discussed both similarities and differences with
models described by the DNLS equation, derived in the f
quently used tight-binding approximation, and with the r
sults of the coupled-mode theory, which are valid for a sh
low modulation and a narrow gap in the transmissi
spectrum.
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